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Singularities in the Rayleigh-Taylor instability of a thin plasma slab
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A theoretical study of the interchangelike~Rayleigh-Taylor! instability of a thin slab of weakly ionized
plasma is presented. We have found an analytical solution for the stationary motion of a plasma slab under the
effect of the magnetic field pressure. This solution describes a shock-wave-like structure of the magnetic field
and is unstable against the interchange mode. Using an approach developed earlier@E. Ott, Phys. Rev. Lett.29,
1429 ~1972!; S.V. Bulanov, and P.V. Sasorov, Sov. J. Plasma Phys.4, 418 ~1978!# we have obtained exact
solutions, in terms of analytical functions of a complex variable, of the Cauchy problem for the evolution of
nonlinear perturbations. We have investigated the formation of the typical singularities that correspond to
different wave breaking regimes in an unstable medium. We discuss Ott’s problem of the Rayleigh-Taylor
instability of initially nonplanar shells.@S1063-651X~99!10602-0#

PACS number~s!: 95.30.Qd, 47.20.Ky, 52.35.Tc, 52.35.Py
s
ib
ba
li-
ge
in

t
be
d-
r
th
is

on

kl
ti
rm
fo

i
t
e
lo

l
fo
ty
,
t

e
r

en
th

or-

r
tral

to
as

the

that
ed
tic
is

bil-
a

of
or
to
im-

ally

n
ty.
ility
uss
s a
re-
fac-

of
-
y.
is

on
I. INTRODUCTION

The Rayleigh-Taylor instability provides one of the be
examples of the basic behavior of a fluid when its equil
rium configuration is unstable against infinitesimal pertur
tions. This instability plays an important role in many app
cations including inertial confinement fusion when the tar
is compressed by the laser light, plasma confinement
magnetic field, and supernova explosions. In many cases
nonlinear features of the Rayleigh-Taylor instability can
studied analytically, since in various limits its evolution a
mits exact solutions. In the present paper we conside
model that provides a very transparent description of
nonlinear stage of the Rayleigh-Taylor instability. Th
model describes the dynamics of a thin slab of weakly i
ized plasma under the pressure of a magnetic field.

Recently the magnetohydrodynamic behavior of wea
ionized plasmas has been the subject of several theore
studies in space physics. These studies have been perfo
within the model of the coupled hydrodynamic equations
the ionized and for the neutral components@1–5#. The dy-
namics of weakly ionized plasmas plays an important role
space plasmas since they occur in protostellar disks, in
cores of molecular clouds@2# where stars form, and near th
photosphere of the sun. Molecular clouds have a very
state of ionization, with ionization fractions around«
5r/r (n)'1027, wherer andr (n) are the ion and the neutra
components of the plasma. Under typical conditions
space plasmas the magnetic field is as important as gravi
the molecular clouds@3#, while, in the solar photosphere
magnetic field line reconnection can be invoked in order
explain bright point formation@4#.

An important factor in weakly ionized plasmas, besid
Ohmic and viscous dissipation, is the momentum and ene
exchange between the ionized and the neutral compon
This mechanism has been investigated in connection with

*Author to whom correspondence should be addressed. Electr
address: pegoraro@difi.unipi.it
PRE 591063-651X/99/59~2!/2292~10!/$15.00
t
-
-

t
a
he

a
e

-

y
cal
ed

r

n
he

w

r
in

o

s
gy
ts.
e

damping of magnetohydrodynamic~MHD! fluctuations in
Refs.@1#.

The effect of the ion-neutral interaction becomes imp
tant when the ion-neutral collision time 1/n(n)vs ( in) is much
shorter than the typical timet0 of the physical process unde
consideration. Estimating the cross section of the ion-neu
collisions ass ( in)'5310215 cm2, and the typical timet0
as the Alfvèn timeta5 l /va , with va the Alfvèn velocity, we
can write the condition when the ambipolar diffusion due
ion-neutral collisions changes the regime of MHD motion
l .231014/n(n) cm. Heren(n) is the neutral density,l is the
typical scale of the motion, and we have supposed that
Alfvèn Mach numberMa5v/va'1. Under typical param-
eters of molecular clouds, wherel'1018 and n
'103 cm23, this condition can be easily satisfied.

In the present paper, we present analytical solutions
describe stationary regimes of motion of a weakly ioniz
plasma in the magnetic field. We show that the magne
field has a shock-wave-like structure. This configuration
unstable against the interchangelike instability. This insta
ity is similar to the interchange instability of a fluid plasm
supported against gravity by a magnetic field@6# and to the
Rayleigh-Taylor instability. As is well known, the studies
the Rayleigh-Taylor instability are of great importance f
inertially confined fusion since this instability is inherent
imploding plasmas and leads to the deterioration of the
plosion symmetry@7#. The Rayleigh-Taylor instability in la-
ser plasmas has been studied intensively both theoretic
and experimentally~see Ref.@8# and references therein!. We
shall use the thin shell approximation developed in Refs.@9#,
@10#, and@11# that allows us to give an analytical descriptio
of the nonlinear aspects of the Rayleigh-Taylor instabili
We analyze the nonlinear stage of the interchange instab
of a thin plasma slab of a weakly ionized plasma and disc
the typical structures of the singularities that appear a
result of the instability and that correspond to various
gimes of the wave breaking in an unstable medium: rare
tion and compression wavebreak.

The thin shell approximation is equivalent to the study
the instability in the long wavelength limit which may be
come invalid in the final nonlinear stage of the instabilit
This limitation is discussed explicitly in Sec. VI, where it
ic
2292 ©1999 The American Physical Society
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PRE 59 2293SINGULARITIES IN THE RAYLEIGH-TAYLOR . . .
argued that in the case of the rarefaction wavebreak the lo
wavelength approximation remains valid up to the format
of the singularity itself. In the case of the compression wa
break the long wavelength approximation ceases to be v
in the final nonlinear stage. Thus, in this case, the res
presented in this paper have the meaning of ‘‘intermed
asymptotics’’ and describe the trend towards the format
of spatial singular structures.

II. BASIC EQUATIONS: STATIONARY MOTION
OF A PLASMA SLAB

In the weakly ionized plasmas in the long-wavelength
proximation, which is supposed to be valid in the limit co
sidered in the present paper, the momentum exchange
tween ionized and neutral components balances the Lor
force and the force due to the plasma pressure grad
Then, assuming in the limitr (n)/r@1 that the velocity of the
neutral components is much less then that of the ioni
component and neglecting the ion inertia, we obtain the s
tem of equations:

v52
1

n~ in !S“P

r
2

~“3B!3B

4pr D , ~1!

] tr1¹•~rv!50, ~2!

] tB5“3~v3B!. ~3!

Here v is the velocity of the ionized component,r is the
plasma density,B is the magnetic field,n5n(n)vs ( in) andP
is the plasma pressure. To these equations we must ad
equation of stateP5P(r,T)5rT/mi . Here mi is the ion
mass andT is the sum of the ion and electron temperatur
We take these temperatures to be constant due to the
thermal conductivity and charge exchange rate.

In the one dimensional approximation, when all the fun
tions depend on thex-coordinate and time only, Eqs.~1!–~3!
have stationary solutions. These solutions describe a fi
width plasma slab moving under the magnetic and plas
pressure with constant velocityV. We introduce the new
variable

X5x2Vt ~4!

and obtain from Eq.~1!

rn~ in !V52
1

mi
r8T2

1

4p
BzBz8 . ~5!

A prime denotes differentiation with respect to the varia
X. The magnetic field has anX-dependentBz component
frozen in the plasma which moves with constant veloc
along thex axis. We see that Eq.~5! gives one relationship
for the two unknownsBz andr. This means that one of thes
functions is supposed to be given. The problem under c
sideration is characterized by two dimensionless parame

a5
GM

Kn
5

Vn~ in !GL

cs
2

~6!
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b5
8pn0T

B0
2

5
2cs

2

va
2G

. ~7!

Here B0 is the reference magnitude of the magnetic fie
n05r0 /mi ,cs is the sound speed,G is the adiabatic index,
M5V/cs is the Mach number,va5B0 /(4pr0)1/2 is the ref-
erence Alfvén velocity, Kn the Knudsen number defined
Kn5cs /n ( in)L andL is a scale length. The plasma velocity
equal toV5acsKn.

We take the magnetic field to be of the form

Bz~X!5
B11B2

2
1

B12B2

2
tanhS X

L D , ~8!

whereB1 andB2 are the magnetic field values ahead of a
behind the plasma slab withB05(B11B2)/2. We see that
the magnetic field has a form of the shock wave that pro
gates with constant velocityV along thex axis.We consider
boundary conditions such that the densityr vanishes atX
→2`.

In Fig. 1 the solution fora50.25,b50.5,B151.5,B2
52.5 is shown. We see that the density distribution is ch
acterized by two scale lengths, the shorter is equal to
magnetic field scale-length while the longer is about 1b
times larger.

III. INTERCHANGELIKE INSTABILITY
OF A THIN PLASMA SLAB

Now we show that the stationary solution obtained in t
previous section is unstable. This instability is similar to t
interchange instability of a fluid plasma supported agai
gravity by a magnetic field@6# and to the Rayleigh-Taylor
instability. We shall analyze this instability in the long
wavelength approximation, when the perturbation wa
length is much larger than the slab width. In this approxim
tion the plasma distribution can be assumed to have the f
of a thin foil. We adopt the approach developed in Ref.@9# in
the case of a plasma without a neutral component.

We assume that the foil~infinite in they andz directions!
is initially located in thex50 plane. We take its thicknes
l→0 at constant surface mass densitys5r l . We consider a

FIG. 1. Distribution of thez-component of the magnetic field
and of the plasma density fora50.25, b50.5, B151.5, andB2

52.5.
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2294 PRE 59S. V. BULANOV, F. PEGORARO, AND J.-I. SAKAI
2D case where all variables depend on two coordinatex
andy, and on timet and the foil moves in thex-y plane.

We introduce the Lagrange variables,x0 , andy0 , related
to the Euler coordinates by

x5x01jx~x0 ,y0 ,t !, ~9!

y5y01jy~x0 ,y0 ,t !. ~10!

Herejx(x0 ,y0 ,t) andjy(x0 ,y0 ,t) are the components of th
foil displacement vector. We consider two points on the f
initially separated by the distanceds05udr0u; at time t they
are separated by the distanceds5udr u, where

ds05@~dx0!21~dy0!2#1/2 ~11!

and

ds5@~dx!21~dy!2#1/2, ~12!

respectively. In the Lagrange variables we have for the s
face mass

s0~s0!ds05s~x0 ,y0 ,t !ds. ~13!

We introduce the surface mass Lagrange variablem, which is
given by equation

m5Es0
s0~s0!ds0 . ~14!

The magnetic field pressure acts on an element of the fo
lengthds5udr u with the force

df5P~dr3ez!, ~15!

wheredr is a vector in thex-y plane directed along the foi
and

P5
B2

8p
. ~16!

The magnetic fieldB is assumed to vanish at the front of th
foil and to have a constant magnitude along the back of
foil. In the long-wavelength approximation, which we use
this paper, the jump of the magnetic field is constant si
the electric current density, integrated across the foil can
change its magnitude along the foil because of the condi
div J50. The magnetic field pressureP5P(t) is taken to be
a given function of time.

Settingdf5dm] tr , we obtain the equations of motion

n~ in !sdsṙ5P~dr3ez!. ~17!

Writing dr5(dr /ds0)ds05(dr /dm)dm we obtain the
equations of motion of the foil in the surface-mass Lagran
variable

]tx5]my, ~18!

]ty52]mx, ~19!

where we have introduced the normalized time variable
l

r-

of

e

e
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n

e

t5E tP~ t !

n~ in !
dt. ~20!

The stationary motion of the plasma slab with const
velocity along thex axis corresponds to the solution of Eq
~18! and ~19!:

x5t, y5m. ~21!

This solution is unstable against perturbations of the fo
(x2t, y2m)}exp(iqm), where q is the wave number of
perturbations in Lagrangian variables. The growth rate of
instability is

g5q. ~22!

The expression for the time dependence of the perturbat
can be rewritten in dimensional units in the form (x, y)
}exp@*tg(t)dt# with g5gq/n ( in) where the effective gravity
g is equal to g5va

2(t)/ l ,l is the foil thickness andva

5B/(4pr)1/2 is the Alfvén velocity. The growth rate of the
Rayleigh-Taylor instability of a thin slab in the absence
friction is equal togRT5(gq)1/2 @9#. ~This result applies also
to a finite-width, internally homogeneous, slab with sha
boundaries@12#!. We see that the ion-neutral collisions slo
down the instability when the collision frequency is larg
thangRT .

The solution of Eqs.~18!, ~19!, with initial conditions
x(0)5jx0 sinqm andy(0)5m1jy0 cosqm, gives

x5t1@jx0 cosh~qt!2jy0 sinh~qt!#sinqm, ~23!

y5m1@jy0 cosh~qt!2jx0 sinh~qt!#cosqm, ~24!

with jx0 andjy0 the perturbation amplitudes. It describes t
superposition of a uniform motion along thex axis with con-
stant velocityV51 and of exponentially growing perturba
tions with wavelength 2p/q. In the nonlinear stage of the
instability, as in the case investigated in Ref.@9#, the foil,
initially located in the planex50, is folded and cusps an
bubbles form with a periodic chain of maxima and minim
alongy. The density of the plasma in the foil is given by

s5
s0~m!

@~]mx!21~]my!2#1/2
. ~25!

At the top of the bubbles the density decreases exponent
in time: for t→` we obtains;s0(qj0)21 exp(2gt). On
the contrary, in the cusp region the density increases an
singularity appears in a finite time after which the soluti
cannot be continued. This singularity has been discusse
Refs.@9# and@10# and corresponds to the compression wa
breaking.

IV. USE OF THE CONFORMAL MAPPING TO DESCRIBE
THE NONLINEAR STAGE OF THE
RAYLEIGH-TAYLOR INSTABILITY

Equations~23! and~24! give only a particular solution of
Eqs.~18! and~19!. In order to find the generic solution of th
Cauchy problem we observe that Eqs.~18! and~19! are sim-
ply the Cauchy-Riemann conditions for the real and ima



te

le

r-
tic
r

m

th

-

e
-

te

ions
the

f a
all

the

s.

a

r-

ave

agi-
on

e-

.

ster

rs
en-
’’

PRE 59 2295SINGULARITIES IN THE RAYLEIGH-TAYLOR . . .
nary parts of an analytical functionW(z) of a complex vari-
able

z5m1 i t. ~26!

The real part ofW(z) is equal to thex coordinate of the foil,
while they coordinate is the imaginary part. Thus we wri

x1 iy5W~z!. ~27!

This expression is the conformal mapping from the comp
planem1 i t to the planex1 iy .

Following Ref.@13#, where the nonlinear stage of the tea
ing mode of a thin current sheet was investigated, we no
that the analytical functionW(z) is defined by its behavio
on the real axist50, i.e., by the initial conditionsjx(y0,0)
andjy(y0,0). This gives the solution for the Cauchy proble
for the elliptical system of Eqs.~18! and ~19!. According to
Eq. ~25! the surface mass of the foil is equal to

s5
s0~m!

uW8~z!u
, ~28!

where a prime denotes differentiation with respect to
complex variablez.

The functionuW8(z)u is the Jacobian of the transforma
tion that gives the mapping of the curvex1 iy5W(m), the
foil shape att50, to the curvex1 iy5W(m1 i t), which
describes the change of the foil shape. Here the timet is the
parameter of the mapping.

In order to show the typical behavior of the solution d
scribed by Eq.~27! we consider several different initial con
ditions.

~i! The initial conditions

x~m,0!5kR

1

11m2
, y~m,0!52m1k I

1

11m2
~29!

correspond to the analytical function

W~z!52 i z1k
1

11z2
, ~30!

where k5kR1 ik I is a complex constant and its absolu
value gives the amplitude of the perturbation. From Eq.~27!
we find

x~m,t!5t1kR

12t21m2

~12t21m2!214m2t2

1k I

2mt

~12t21m2!214m2t2
, ~31!

y~m,t!52m1k I

11t21m2

~12t21m2!214m2t2

2kR

2mt

~12t21m2!214m2t2
. ~32!
x

e

e

-

These expressions describe the growth of perturbat
that are faster than exponential. It is easy to see that at
finite time t51 the JacobianuW8u of the transformation be-
comes infinite at the pointm50. This corresponds to the
rarefaction wave break that occurs with the formation o
hole in the plasma density distribution. In the case of a sm
amplitude perturbation. i.e., for a small absolute value of
parameterk, we obtain from Eq.~30! in the neighborhood of
z5 i ,

W~z!'2 i z1k
1

2~z2 i !
~33!

and

W8~z!'2 i 2k
1

2~z2 i !2
. ~34!

As mentioned above, the JacobianuW8u tends to infinity
for t51 at pointm50 where the plasma density vanishe
For real positive~negative! k this singularity is accompanied
by the compression wave breaks att516(7)ukRu1/2/2 at
the pointsm56ukRu1/2/2, respectively, where the plasm
density tends to infinity.

If k is a positive imaginary number, the singularity co
responds to the compression wave break at the pointm50 at
time t512(k I /2)1/2, while, if k is a negative imaginary
number, the singularity corresponds to the compression w
break at the pointm56(uk I u/2)1/2 at time t51. The typical
singularity corresponds to the case when both real and im
nary parts ofk do not vanish. In this case the compressi
wave break occurs first, followed att51 by the rarefaction
wave break atm50. This case is illustrated in Fig. 2 fork
50.2(11 i ).

~ii ! A perturbation localized in a finite region can be d
scribed by the initial conditions

x~m,0!5kR exp~2m2!, y~m,0!52m1k I exp~2m2!.
~35!

The corresponding analytical function given by Eq.~27! is

W~z!52 i z1k exp~2z2!, ~36!

where againk5kR1 ik I is a complex constant. From Eq
~27! we find

x~m,t!5t1exp~t22m2!@kR cos~2mt!2k I sin~2mt!#,
~37!

and

y~m,t!5m1exp~t22m2!@k I cos~2mt!1kR sin~2mt!#.
~38!

These expressions describe perturbations that grow fa
than exponential. We see that in a finite time,t
'(ln1/2uku)1/2 for uku!1, a compression wave break occu
with the formation of singular regions where the plasma d
sity tends to infinity. In the regions in between, ‘‘bubbles
form where the plasma density decreases as exp(2t2).

~iii ! Now we consider the analytical function



a-
th

s
n

ia
r

dr

d

the

hal
s
de-
lly
on
e
the
3
e

.
s,
hell
tes

ons

-
ex-
to

ber
ical
that
nds

the
-

e
es-
Eq.
in-

er-
sion
is

di-

ake
the
res-
pli-

us,
as

en
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W~z!5exp~6 i z!1kw~z!, ~39!

wherek is supposed to be small and2p<m<p. This ex-
pression provides a solution of Eqs.~18! and ~19! that de-
scribes the Rayleigh-Taylor instability of an initially nonpl
nar, thin shell. The shell has a circular form modulated in
azimuthal direction according to the functionkw(z). De-
pending on the sign in the exponent the shell either collap
or expands and its radius decreases or increases expo
tially.

For initial conditions corresponding to an exponent
modulationw(m)5exp(2iqm), with integer wave numbe
q.1, we have

W~m1 i t!5exp~7t6 im!1k exp~qt2 iqm!. ~40!

This expression describes a collapsing or expanding cylin
cal shell, modulated with azimuthal numberq and initial
modulation amplitudeuku. We see that both converging an

FIG. 2. Formation of the singularity on the foil in the case wh
neither the real nor the imaginary parts ofk vanish: k50.2(1
1 i ). ~a! Change of the foil shape and~b! density of the plasma
versus they coordinate att50, 0,25, 0.5, 0.75, 0.9.
e

es
en-

l

i-

diverging shells are unstable against perturbations of
form given by Eq.~40!. After a finite time interval, a com-
pression wave breaking occurs with a periodic azimut
structure. According to Eq.~40!, in the Lagrange coordinate
we have a linear superposition of the expressions that
scribe the cylindrical shell motion and the exponentia
growing perturbations. In particular, there is no stabilizati
of the Rayleigh-Taylor instability due to stretching of th
expanding shell. Similar patterns of the wave breaking in
converging and expanding shells are also seen in Figs.~a!
and 3~b!, which present the evolution of the instability in th
framework of the Ott’s model@9#, which we discuss below

According to heuristic arguments in Euler coordinate
stretching should saturate the perturbations when the s
radiusR increases. It is reasoned that in the Euler coordina
the wavenumber and the amplitude of the perturbati
change according to

q̇52
Ṙ

R
q, and Ẇ2q~t!W50. ~41!

For an exponentially growing radius of the shell,R
5R0exp(t), we findq5q0exp(2t). In this case the heuristic
reasoning predicts that the amplitudeW(t) saturates. Pertur
bations of the converging shell instead grow faster than
ponential due to the shell shrinking. Stabilization due
stretching has been discussed in Ref.@14#, in the case of the
vortex stability, and in Refs.@15–17# for the tearing mode of
a current sheet.

Contrary to this prediction we see from Eq.~40! that, in
the Lagrange coordinates, the perturbation wave num
does not change. Indeed, in the Euler coordinates the typ
scale length of perturbations decreases, which implies
the wave number grows. Since the wave number correspo
to the derivative with respect to the coordinates, using
relationshipd/ds5J21d/ds0 , we can write the relation be
tween the wave number in the Euler coordinatesqE and that
in the Lagrange coordinateqL as qE5J21qL . Here J
5uds/ds0u is the Jacobian of the transformation from th
Euler to the Lagrange coordinates. If we linearize the expr
sion for the Jacobian, assuming that the perturbations in
~40! are relatively small, we obtain that the Jacobian
creases exponentially for an expanding shell so thatqE
}exp(2t)→0. Nevertheless, nonlinear effects due to the p
turbations make the Jacobian vanish when the compres
wave break occurs. Thus the Rayleigh-Taylor instability
not stabilized either in the Lagrange or in the Euler coor
nate plane.

However, in the case of an expanding shell, we must t
into account the slowing down of the instability because
magnetic field inside the shell, and thus the magnetic p
sure acting on the shell, decrease. Assuming that the am
tude of the shell modulation is smaller that the shell radi
we estimate the magnetic flux inside the cylindrical shell

BR25F5const. ~42!

Then, forR(t)5R0exp(t), we find from Eq.~20!

t5 1
4 lnS F2

2pR0
4n~ in !

t D . ~43!
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Inserting this expression fort into Eq. ~40! we obtain that
the shell radius increases proportionally tot1/4 while the per-
turbations grow astq/4.

We shall further discuss the effects of the shell expans
or compression, later in the context of Ott’s problem of t
Rayleigh-Taylor instability of a thin shell.

V. LOCAL STRUCTURE OF THE WAVE BREAK
IN STABLE AND UNSTABLE MEDIA

We have described several scenarios of wave brea
that correspond to the so-called ‘‘gradient catastroph
when the gradients in the perturbations tend to infinity afte
finite time interval. All these singularities can be subdivid
into two classes according to the evolution of the Jacobia
the transformation from the Lagrange to the Euler coor
nates. In our case the Jacobian is equal touW8(z)u. The the
first kind of wave break corresponds to the compression c
where the Jacobian vanishes at the pointz0 . This singularity
is typical for both stable and unstable media. The discuss
of this wave break is presented in Refs.@18# and @19#. In
collisionless media the compression wave break result
the self-intersection of the particle trajectories and in the f
mation of regions with the multistream motion. In dissipati
media, in the 1D case, compression wave break results in
formation @18# of a shock wave. In the second kind of si
gularities, which do not exist in stable media, the Jacob
becomes infinite at the critical point of the transformati
z0 . This singularity corresponds to the rarefaction wa
break.

In the case of the break of the first type, withuW8(z0)u
50, we can expand the functionW8(z) in the vicinity of the
critical point z0 which, with a coordinate change, can b
shifted to the origin. Thus we write

W8~z!5 iaz1 ibz21••• ~44!

and

W~z!5 ia
z2

2
1 ib

z3

3
1•••, ~45!

where a and b are complex constants~by a shift in the
coordinates this dependence can be transformed into
standard form of a cubic curve used in the theory of sin
larities @20#: i ã z̃1 i b̃ z̃31•••).

The essential property of the local representation of
mapping from the Lagrange variables to the Euler variab
given by Eq.~45! is the cubic dependence on them coordi-
nate. Modulo a rotation in thex-y plane,b can be taken rea
and positive. Then we have

x5b
t3

3
1a I

t2

2
2aRtm2S bt1

a I

2 Dm2
•••, ~46!

y52aR

t2

2
2~bt21a It!m1

aR

2
m21

b

3
m3 . . . , ~47!

where onlyy has a cubic dependence onm. At the critical
time t50 the foil has a cusplike shape with sides given
n,
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y52S aR

a I
D x6

b

3S 2

a I
D 3/2

x3/2 and
x

a I
.0. ~48!

If aR50 the cusp axis is aligned along thex axis. The case
a I50 is exceptional and leads to a different cusp form. T
singularity described by Eq.~45! has a one-dimensiona
structure and the other dimensions ‘‘dress’’ it according
Ref. @20#. Considering for the sake of simplicity the cas
aR50, we see that the singularity appears along they coor-
dinate which, ifa I.0, is a single valued function ofm for
t,0 and becomes multivalued fort.0.

Now we discuss the break of the second kind, wh
uW8(z0)u5`. Again, the critical pointz0 can be shifted to
the origin. In order to analyze the local structure of this ma
ping, we consider the inverse mappingU(z)5W21(z) from
the planex1 iy to the planem1 i t :

m1 i t5U~z!, ~49!

with z5x1 iy . According to the rule of differentiation of the
inverse functions we find

dU

dz
5

1

dW

dz

, ~50!

which proves the known property that the Jacobian of
inverse mapping vanishes,U8(z0)50, at the critical point of
the direct transformation where the JacobianW8(z0)5`.
The coordinates of the critical point in thex1 iy plane are
given byz05W(z0).

The behavior of the system near the singularity is diff
ent depending on whether the value ofz05W(z0) is finite or
infinite.

If the position of the singularity is at a finite distance
thex-y plane from the initial foil position, we can repeat th
argument given above Eq.~44! and obtain the local expan
sion

U~z!5 i
a8

2
z21 i

b8

3
z31•••, ~51!

which is the counterpart of Eq.~45!. We note that Eq.~51!
corresponds to a solution of Eqs.~18! and ~19!, where we
have performed the hodograph transformation that in
changes dependent and independent variables. This tran
mation yields

]xt5]ym, ~52!

]yt52]xm. ~53!

In the x-y plane relationship~51! corresponds to the expan
sion

W~z!5S 2i

a8
D 1/2

z1/22S 22ib82

9a83
D 1/2

z3/21•••. ~54!

Choosing now, for the sake of convenience, botha8 andb8
real we obtain instead of Eqs.~46! and ~47!
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m52a8xy2b8x2y1
b8

3
y3
•••, ~55!

t5
a8

2
~x22y2!1

b8

3
x32

b8

3
xy2

•••. ~56!

Equation ~56! shows that att'0 this break occurs along
hyperbolic arc segments. One branch of hyperbola, desc
ing the local shape of the foil before the break, splits ax
50,y50 into two hyperbolic segments moving in the tw
neighboring quadrants.

When the singularity in thex-y plane is at infinity, we use
the local expansion

W~z!52 i z2 i
b

z
1•••, ~57!

which corresponds to Eq.~34!. For U(z) in the limit z→`
we haveU(z)5z52 ib/2z. Separating real and imaginar
parts, we find that asymptotically the form of the shell ne
the singularity is described by a circle,

S x1
b

2t D 2

1y25
b2

4t2
. ~58!

Both the radius and the center of the circle tend to infinity
t→0. A similar evolution of the perturbations is seen in F
2.

VI. THE ILL POSEDNESS OF THE PROBLEM
OF A THIN SHELL INSTABILITY

The expressions obtained above describe the evolutio
initially infinitesimal perturbations of foils with a smoot
shape fort,t0 , wheret0 is the time when the singularity
appears. These solutions cannot be continued after the s
larity. The singularities are formed when the Jacobian of
transformation from the Euler to the Lagrange coordina
uW8(z)u either vanishes or becomes infinite. The latter c
corresponds to a pole or to a cut of the analytical funct
W(z). An arbitrary small change of the form of the initia
perturbation can lead to the appearance of a new pole in
complex planem1 i t and can change the time and the loc
tion of the singularity. This is a well known property of th
ill-posed problems for partial differential equations@19#. In
connection with the discussion of the final stage of vario
instabilities, the ill posedness has been discussed in R
@21,22,14#, in the case of the Kelvin-Helmholtz instability o
vortex sheets, and in Ref.@13# in the case of the tearing
instability of the current sheet.

We notice that the nonlinear interactions do not regular
the solutions, contrary to the hypothesis made in Ref.@14#, as
nonlinear interactions themselves lead to the appearanc
singularities.

There are two reasons for the formation of a singula
after a finite time. The first mechanism is the compress
wave break, which is inherent to nonlinear systems a
originates from the (v–¹)v term in the hydrodynamic equa
tions. The second reason is due to the fact that the probl
under consideration are ill posed and it originates from
b-

r
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use of the long-wavelength approximation. The expressi
that are derived in this approximation lead to instabil
growth rates that increase with the wave number of the p
turbations. If the Fourier transform of the analytical functio
W(z) of the complex variablez5m1 i t, taken att50,
gives a functionW̃(q) that extends to infinity, it leads un
avoidably to a singular behavior of the function in the co
plex planem1 i t at a finite distance from the origin. In othe
words, there are disturbances which grow arbitrarily f
whenq→`. Instead, if the Fourier transformW̃(q) is non-
zero only inside a finite size regionuqu,qm , and vanishes
identically beyond this region, the analytical functionW(z),
obtained by inverse Fourier transform, has a singular po
only at infinity @23#.

Outside the domain where the long-wavelength appro
mation holds, we expect that the growth rate saturates
function of the wave numberq and vanishes either at infinity
or at a finite valueq5qm . This provides a regularization o
the solution. To show this regularization we consider the o
pole approximation of the singularity given by Eq.~33!. The
Fourier transform of the functionW(z)5 i z1a/z is the sum
of the derivative of ad function and of a Heaviside ste
function: W̃(q)52d8(q)2 iau(q), which extends to infin-
ity in the q coordinate. In order to regularize this solution w
consider a heuristic argument and suppose that the sh
wavelength behavior of the instability results in the decay
the perturbations withq.qm . This decay can be taken int
account as a cutoff of the functionW̃(q) at qm by writing
W̃(q)52d8(q)2 iau(q)u(qm2q). The inverse Fourier
transform of this function gives W(z)5 i z1a„1
2exp(iqmz)…/z. For uzu@1/qm the behavior of this function
is similar to that in the one pole approximation. Instea
whenuzu,1/qm the growth of perturbations slows down an
becomes exponential. In addition, a modulation of the so
tion appears, with wavelength 2p/qm .

Before concluding this section it is important to obser
that these limitations, which are intrinsic to the lon
wavelength approximation, have different consequence
the case of the rarefaction and of the compression w
break. This difference arises from the opposite behavior
the characteristic perturbation wave numberk(t) when the
singularity is approached in the two cases. The lon
wavelength limit corresponds tokL!1, whereL the thick-
ness of the shell. According to the analysis of Sec. IV,
absolute value at timet of the wave numberk(t) is inversely
proportional to the JacobianuW8(z)u in Eq. ~28!.

In the case of the rarefaction wave break the Jacob
uW8u(t→t0)→` so that the long-wavelength approximatio
works better and better close to the singularity sincek tends
to zero as the singularity is approached. Futhermore, if
assume that the shell keeps a constant volume density du
its evolution, Eq.~28! shows that close to the rarefactio
singularity the stretching of the shell results in a correspo
ing reduction of its width, which also contributes to the v
lidity of the long-wavelength approximation.

Different is the case of the compression break sin
uW8u(t→t0)→0. In this case, after a relatively short time, th
solution enters the short-wavelength regime and its furt
evolution depends on the specific details of the internal str
ture of the plasma slab, which can no longer be considere
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a thin shell. When the wavelength of the nonlinear pertur
tion becomes much shorter than the slab width, and the
has sharp boundaries, we may adopt the semi-infinite dom
model which is well developed in the case of the Rayleig
Taylor instability starting from the work by Fermi and vo
Neumann@25#

VII. OTT’S PROBLEM FOR AN INITIALLY NONPLANAR
SHELL

In this section we assume that the density of the neu
component vanishes so that the equation for the foil mo
is sdsr̈5df . The evolution of the Rayleigh-Taylor instabi
ity of an initially nonplanar thin shell was investigated n
merically in Refs.@10# and @11#, while an azimuthally sym-
metric configuration where the variables depend on ther and
z coordinates was discussed in Ref.@24#. Here we consider
the case of an azimuthally asymmetric foil which is taken
be uniform along thez-axis. In the mass Lagrange coord
nates the 2D equations of motion of the foil, Eqs.~2! and~3!
of Ref. @9#, take the form

]ttx5]my, ~59!

]tty52]mx. ~60!

From these equations it follows that the complex funct
w(m,t)5x1 iy obeys equation

]ttw52 i ]mw, ~61!

while for the complex conjugate functionw* (m,t)5x2 iy
we have

]ttw* 5 i ]mw* , ~62!

where w and w* are considered as independent functio
with x5(w1w* )/2, andy52 i (w2w* )/2.

The particular solutionw5 im1t2/2 corresponds to a
uniformly accelerated plane foil while the solution

w~m,t!5x1 iy5 im32 i 1
4 mt42 1

120t61 3
2 m2t2 ~63!

describes the local structure of the wave breaking and has
characteristic cubic dependence of the coordinatey on m.

For w(m,t)}exp(imq) Eq. ~61! describes exponentially
growing and decaying modes forq.0 and oscillatory modes
with real frequency forq,0. The intervals inq are inter-
changed in Eq.~62! for w* (m,t)}exp(imq).

For initial conditions w0(m)5w1 exp(im)1w3 exp(iqm)
and ]tw0(m)5w2 exp(im)1w4 exp(iqm) and w0* (m)
5w5 exp(2im)1w6 exp(2iqm) and ]tw0* (m)5w7 exp
(2im)1w8 exp(2iqm) the solutions of Eqs.~61! and~62! are
of the form

w~m,t!5~w1 cosht1w2 sinht!exp~ im!

1~w3 coshAqt1w4sinhAqt!exp~ iqm!

~64!

and
-
ab
in
-

al
n

s

he

w* ~m,t!5~w5 cost1w6 sint!exp~2 im!1~w7 cosAqt

1w8 sinAqt!exp~2 iqm! ~65!

with constantwa .
We consider an initial configuration withq an integer

greater than one,w15w25w350 and w45k!1, and w5
51,w65w75w850. In this case Eqs.~64! and~65! describe
a collapsing cylindrical shell, modulated with azimuth
numberq and initial amplitudek. As we can see in Fig. 3~a!
the radially expanding shell is unstable against perturbati
of the form given by Eq.~64!. After a finite time interval,
compression wave breaking occurs with periodic azimut
structure.

A converging shell is also unstable, as we see in Fig. 3~b!.
The development of modes of this type was observed exp
mentally in Ref.@26#, examining the Rayleigh-Taylor insta
bility of a cylindrical slab. According to Eqs.~64! and ~65!,
in the Lagrange coordinates we have a linear superpos
of terms that describe the motion of the cylindrical shell a
exponentially growing perturbations. As in the case stud
in Sec. IV, there is no stabilization of the Rayleigh-Tayl
instability due to stretching of the expanding shell. If we ta
into account that the pressure inside the shell decreases
find again that the exponential dependence of the pertu
tions and of the expansion of the shell on the variablet
corresponds to slower, algebraic dependences on time.

Now we consider the generic solution of Eq.~61!. This
equation admits seven symmetry transformations represe
by the operators:

X`5w1~m,t!]w , ~66!

wherew1(m,t) is a solution of Eq.~61!,

X15 i ]m , ~67!

X25]t , ~68!

X352m]m1t]t , ~69!

X452im]t2tw]w , ~70!

X55 i tm]t2 im2]m2 1
4 ~t212im!w]w , ~71!

X65w]w . ~72!

A discussion of the theory of the Lie group analysis of d
ferential equations is presented in Refs.@27,28#. The operator
X` stems from the fact that Eq.~61! is linear with respect to

FIG. 3. Development of the Rayleigh-Taylor instability in th
case of Ott‘s problem~a! for a radially expanding and~b! for a
converging cylindrical shell.
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w(m,t) so that, to any solutionw(m,t), one can add any
other solutionw1(m,t). The operatorsX1 to X4 andX6 cor-
respond to the existence of stationary, of uniform solutio
and to the invariance with respect to stretching of the v
ables, respectively. The operatorX5 represents the transfor
mation

m̄5
m

12am
, t̄5

t

12am
,

~73!

w̄5~12am!1/2 expS iat2

4~12am! Dw.

Under this transformation a solutionf (m,t) takes the form

w~m,t!5
1

~12am!1/2
expS 2

iat2

4~12am! D
3 f S m

12am
,

t

12amD . ~74!

If we choosef 5 i /(4p)1/2 anda521/h in Eq. ~74!, and
superposew5 im1t2/2, we obtain a solution of the form

w~m,t!5 im1
t2

2
1

w0

@4p~m1h!#1/2
expS i

t2

4~m1h! D ,

~75!

wherew05 i (h)1/2 is the initial perturbation amplitude andh
is a complex parameter. The shell is initially a planar f
with perturbations localized in a region with size of ord
uhu. If h is imaginary and positive,h5 i uhu, this solution
describes perturbations that grow faster than exponen
}exp(t2/4uhu). The typical singularity corresponds to th
nonlinear superposition of compression and rarefac
waves. After a finite time the compression wave brea
while it takes an infinite time for the rarefaction wave bre
to occur.

The superposition of solutions

w~m,t!5~w1 cosht1w2 sinht!exp~ im!

1
w0

@4p~m1h!#1/2
expS i

t2

4~m1h! D ~76!

describes the growth of nonlinear perturbations on a cy
drical shell. We see that both converging and diverg
shells are unstable.
n

s
i-

l

l:

n
,

-
g

VIII. CONCLUSIONS AND DISCUSSION

We have analyzed the nonlinear magnetohydrodynam
of a weakly ionized plasma slab. We have demonstrated
the structure of the magnetic field in a stationary plasma s
moving under the magnetic field pressure, is similar to t
of a shock wave. In this case the magnetic field pressur
balanced by the friction due to the interaction with the ne
trals. This configuration is unstable against a Rayleig
Taylor-like instability. In the long-wavelength limit the
plasma slab can be approximated as a thin shell. The non
ear Cauchy problem for the thin shell has analytical so
tions, which we have expressed in terms of analytical fu
tions of a complex variable. We have shown that afte
finite time a singularity forms. These singularities are of tw
types.~In the experiments on the nonlinear evolution of t
Rayleigh-Taylor instability of thin shell these singularitie
are seen as bubbles and spikes@29#! The first type corre-
sponds to the folding of the shell leading to the compress
wave breaking. Mathematically, it arises from the nonline
relationship between the Lagrange and the Euler coordina
The second type corresponds to the tearing of the shell le
ing to the formation of a hole in the density. In this case t
instability growth is faster than exponential. Ott’s problem
the Rayleigh-Taylor instability of a thin nonplanar shell al
has solutions with nonexponential growth of the perturb
tions. In addition, in the case of a nonplanar shell, stretch
does not stabilize the perturbations. In the long-wavelen
approximation, the tearing of the shell after a finite time a
in general the faster than exponential growth are the resu
the ill posedness of the Cauchy problem. Since this ill p
edness is regularized outside the framework of the lo
wavelength model, the regimes with nonexponential grow
found in this paper are meant to describe the intermed
asymptotic behavior of the perturbations. However, in
case of the rarefaction wave break, the long-wavelength
proximation holds up to the formation of the singulari
since the perturbation wave number tends to zero as the
gularity is approached.
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