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Singularities in the Rayleigh-Taylor instability of a thin plasma slab
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A theoretical study of the interchangelikRayleigh-Tayloy instability of a thin slab of weakly ionized
plasma is presented. We have found an analytical solution for the stationary motion of a plasma slab under the
effect of the magnetic field pressure. This solution describes a shock-wave-like structure of the magnetic field
and is unstable against the interchange mode. Using an approach developeflEea@itgrPhys. Rev. LetR9,
1429(1972; S.V. Bulanov, and P.V. Sasorov, Sov. J. Plasma Phyd418(1978] we have obtained exact
solutions, in terms of analytical functions of a complex variable, of the Cauchy problem for the evolution of
nonlinear perturbations. We have investigated the formation of the typical singularities that correspond to
different wave breaking regimes in an unstable medium. We discuss Ott's problem of the Rayleigh-Taylor
instability of initially nonplanar shelld.51063-651%99)10602-0

PACS numbe(s): 95.30.Qd, 47.20.Ky, 52.35.Tc, 52.35.Py

I. INTRODUCTION damping of magnetohydrodynami®¢MHD) fluctuations in
Refs.[1].

The Rayleigh-Taylor instability provides one of the best ~ The effect of the ion-neutral interaction becomes impor-
examples of the basic behavior of a fluid when its equilib-tant when the ion-neutral collision timertPv o™ is much
rium configuration is unstable against infinitesimal perturbaShorter than the typical time, of the physical process under
tions. This instability plays an important role in many appli- consideration. Estimating the cross section of the ion-neutral

X } A . : i (in) ~ - 15 ; -
cations including inertial confinement fusion when the targef:OIIISIOnS asao 5X10 cn?, and the typical timerg

: , : 2~ as the Alfvan time 7,=1/v,, with v, the Alfven velocity, we
's compressed by the laser light, plasma confinement in can write the condition when the ambipolar diffusion due to

magnetic field, and supernova e_xpl05|ons. _In many cases tq'c:fn-neutral collisions changes the regime of MHD motion as
nonlinear features of the Rayleigh-Taylor instability can beI > 2% 104/n™ cm. Heren™ is the neutral density,is the

stydied analytica_lly, since in various limits its evolution ad—t pical scale of the motion, and we have supposed that the
mits exact solut}ons. In the present paper we _conS|der lfvén Mach numbem,=v/v,~1. Under typical param-
mod_el that provides a very tra}nsparent d.eSCFIp.tI.OH of t,h%ters of molecular clouds, wherd~10® and n
nonlinear stage of the Rayleigh-Taylor instability. This 13 cm 3, this condition can be easily satisfied.
model describes the dynamics of a thin slab of weakly ion- | the present paper, we present analytical solutions that
ized plasma under the pressure of a magnetic field. describe stationary regimes of motion of a weakly ionized
Recently the magnetohydrodynamic behavior of weaklyplasma in the magnetic field. We show that the magnetic
ionized plasmas has been the subject of several theoretichéld has a shock-wave-like structure. This configuration is
studies in space physics. These studies have been performegdstable against the interchangelike instability. This instabil-
within the model of the coupled hydrodynamic equations fority is similar to the interchange instability of a fluid plasma
the ionized and for the neutral componefits-5]. The dy- supported against gravity by a magnetic figd and to the
namics of weakly ionized plasmas plays an important role irRayleigh-Taylor instability. As is well known, the studies of
space plasmas since they occur in protostellar disks, in thiéne Rayleigh-Taylor instability are of great importance for
cores of molecular cloud®] where stars form, and near the inertially confined fusion since this instability is inherent to
photosphere of the sun. Molecular clouds have a very lowimploding plasmas and leads to the deterioration of the im-
state of ionization, with ionization fractions arouned  Plosion symmetry7]. The Rayleigh-Taylor instability in la-
—plp™M~10"7, wherep andp(™ are the ion and the neutral S€r plasmf'is has been studied intensively both theoretlcally
components of the plasma. Under typical conditions for2"d €xperimentallysee Ref|8] and references therginVe
space plasmas the magnetic field is as important as gravity i all use the thin shell approximation develo'ped In F{%
the molecular cloud$3], while, in the solar photosphere, 0], and[11] that allows us to give an analytical description

o ; . . : of the nonlinear aspects of the Rayleigh-Taylor instability.
magnetic f'eld I|n_e reconnection can be invoked in order tc\Ne analyze the nonlinear stage of the interchange instability
explain bright point formatiof4].

of a thin plasma slab of a weakly ionized plasma and discuss

The thin shell approximation is equivalent to the study of

the instability in the long wavelength limit which may be-

* Author to whom correspondence should be addressed. Electronmome invalid in the final nonlinear stage of the instability.
address: pegoraro@difi.unipi.it This limitation is discussed explicitly in Sec. VI, where it is
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argued that in the case of the rarefaction wavebreak the long- B.r
wavelength approximation remains valid up to the formation

of the singularity itself. In the case of the compression wave-
break the long wavelength approximation ceases to be valid
in the final nonlinear stage. Thus, in this case, the results
presented in this paper have the meaning of “intermediate
asymptotics” and describe the trend towards the formation o sl
of spatial singular structures.

0.61
Il. BASIC EQUATIONS: STATIONARY MOTION 0 al
OF A PLASMA SLAB \
0 . b
In the weakly ionized plasmas in the long-wavelength ap- j
proximation, which is supposed to be valid in the limit con- -10 -7.5 -5 -2.5 2.5 5 7.5 107

sidered in the present paper, the momentum exchange be- o I
tween ionized and neutral components balances the Lorentz F'C- 1. Distribution of thez-component of the magnetic field
force and the force due to the plasma pressure gradieninzdsOf the plasma density far=0.25, #=0.5, B;=1.5, andB,
Then, assuming in the limji{™/p>1 that the velocity of the

neutral components is much less then that of the ionized

component and neglecting the ion inertia, we obtain the sys- _ 8mngT 205
tem of equations: B2 o ™
v=— 1 /E_ (VXB)xB (1) Here B, is the reference magnitude of the magnetic field,
Him| p 4mp ’ no=po/m; ,Cs is the sound speed; is the adiabatic index,
M =V/c, is the Mach numbem ,=Bg/(4mpo)*? is the ref-
dp+V-(pv)=0, (2)  erence Alfve velocity, Kn the Knudsen number defined as
Kn=c/v(ML andL is a scale length. The plasma velocity is
B=VX(vXB). (3)  equal toV=acKn.

. , . ) We take the magnetic field to be of the form
Here v is the velocity of the ionized componens, is the

plasma densityB is the magnetic fieldy=nMy ¢(" andP B,+B, B,—B, X

is the plasma pressure. To these equations we must add the B,(X)= 5 + 5 it n!‘( ) (8
equation of stateP=P(p,T)=pT/m;. Herem; is the ion
mass andr is the sum of the ion and electron temperatures.
We take these temperatures to be constant due to the hi
thermal conductivity and charge exchange rate.

In the one dimensional approximation, when all the func-
tions depend on the-coordinate and time only, Eq&l)—(3)
have stationary solutions. These solutions describe a finit
width plasma slab moving under the magnetic and plasma’ |

oo,
; : : In Fig. 1 the solution fora=0.258=0.5B,;=1.5B
ressure with constant velocity. We introduce the new ) oL 2
. y =2.5is shown. We see that the density distribution is char-

L 1

hereB, andB, are the magnetic field values ahead of and
ehind the plasma slab witBy=(B;+B,)/2. We see that
the magnetic field has a form of the shock wave that propa-
gates with constant velocity along thex axis.We consider
Boundary conditions such that the densitywanishes aX

variable : .

acterized by two scale lengths, the shorter is equal to the
X=x—Vt (4) magnetic field scale-length while the longer is aboys 1/

times larger.

and obtain from Eq(1)

_ 1 1 Il. INTERCHANGELIKE INSTABILITY
priMv=— —p'T— BB, (5) OF A THIN PLASMA SLAB
1

. ) o ] . Now we show that the stationary solution obtained in the
A prime denotes differentiation with respect to the variableprevious section is unstable. This instability is similar to the
X. The magnetic field has aK-dependent8, component interchange instability of a fluid plasma supported against
frozen in the plasma which moves with constant velocitygravity by a magnetic field6] and to the Rayleigh-Taylor
along thex axis. We see that Eq5) gives one relationship instability. We shall analyze this instability in the long-
for the two UnknOWnBZ andp. This means that one of these Wave|ength approximation, when the perturba’[ion wave-
functions is supposed to be given. The problem under contength is much larger than the slab width. In this approxima-
sideration is characterized by two dimensionless parametergon the plasma distribution can be assumed to have the form
(in) of a thin foil. We adopt the approach developed in Ref.in
o= F_M: VyITL ©6) the case of a plasma without a neutral component.
Kn c§ We assume that the faiinfinite in they andz directions
is initially located in thex=0 plane. We take its thickness
and | —0 at constant surface mass density pl. We consider a
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andy, and on timet and the foil moves in the-y plane.
We introduce the Lagrange variableg, andy,, related
to the Euler coordinates by

2D case where all variables depend on two coordinates, ftp(t)
T= (20

plin) =

The stationary motion of the plasma slab with constant
X=X+ £(Xo,Vo.1), 9 velocity along thex axis corresponds to the solution of Egs.
ot éx(Xo,Yo,t) C) (18) and (19):

Y=Yot &y(Xo,Yo,t). (10) X=71, y=m. (21)

Here &,(Xo,Yo,t) andéy(Xo,Yo,t) are the components of the s sojution is unstable against perturbations of the form
foil displacement vector. We consider two points on the f0|I(X_ 7, y—m)=expiqm), whereq is the wave number of

initially separated by the distancksy=|dro|; at timet they  orrhations in Lagrangian variables. The growth rate of the
are separated by the distants=|dr|, where instability is

dso=[(dxo)?+ (dyp)?]*? 11 y=q. (22)

and The expression for the time dependence of the perturbations
_ ’ 212 can be rewritten in dimensional units in the form, (y)
ds=[(dx)"+(dy)“]™, (12 cex fY(t)dt] with y=gg/+»™ where the effective gravity
9 is equal to g=v§(t)/l,| is the foil thickness andv,
=B/(4mp)*?is the Alfven velocity. The growth rate of the
Rayleigh-Taylor instability of a thin slab in the absence of
oo(Se)dSo= (X0, Y0, 1)dsS. (13 friction is equal toyg=(gq)“?[9]. (This result applies also
to a finite-width, internally homogeneous, slab with sharp
We introduce the surface mass Lagrange variahlhichis  boundarie§12]). We see that the ion-neutral collisions slow

respectively. In the Lagrange variables we have for the su
face mass

given by equation down the instability when the collision frequency is larger
than YRT:
[ The solution of Eqgs(18), (19), with initial conditions
m—f 0(So)dSo- (14 X(0)= &, singmandy(0)=m-+ £, cosgm gives
The magnetic field pressure acts on an element of the foil of X=1+[&xo cosliqr) — €y sinh(g7)Jsingm,  (23)

lengthds=|dr| with the force .
y=m+[&yocosiqr) — &y sini(qr)Jcosgm,  (24)
df="P(dr Xe,), (15 ) i i i
with &, andéyq the perturbation amplitudes. It describes the

wheredr is a vector in thex-y plane directed along the foil Superposition of a uniform motion along thexis with con-

and stant velocityV=1 and of exponentially growing perturba-
tions with wavelength z/q. In the nonlinear stage of the

B2 instability, as in the case investigated in RE9], the foil,
P= sn (16) initially located in the planex=0, is folded and cusps and

bubbles form with a periodic chain of maxima and minima

The magnetic field is assumed to vanish at the front of the @longy. The density of the plasma in the foil is given by
foil and to have a constant magnitude along the back of the
foil. In the long-wavelength approximation, which we use in _ ao(m)
this paper, the jump of the magnetic field is constant since 7 [(9,X) 2+ (3y)2]H2
the electric current density, integrated across the foil cannot
change its magnitude along the foil because of the conditiort the top of the bubbles the density decreases exponentially
divJ=0. The magnetic field pressufe=P(t) is taken to be in time: for 7—o we obtaino~ oo(qé&y) ~* exp(—y7). On
a given function of time. the contrary, in the cusp region the density increases and a
Settingdf=dmd,r, we obtain the equations of motion  singularity appears in a finite time after which the solution
_ . cannot be continued. This singularity has been discussed in
vIMgdsr=P(drXe,). 17 Refs.[9] and[10] and corresponds to the compression wave
breaking.

(25

Writing dr=(dr/dsg)dsy=(dr/dm)dm we obtain the

equations of motion of the foil in the surface-mass Lagrangqy. Use OF THE CONFORMAL MAPPING TO DESCRIBE
variable THE NONLINEAR STAGE OF THE

RAYLEIGH-TAYLOR INSTABILITY
3.X=0dmy, (18

Equations(23) and(24) give only a particular solution of
3,y =—0mX, (199  Egs.(18) and(19). In order to find the generic solution of the
Cauchy problem we observe that E¢s8) and(19) are sim-
where we have introduced the normalized time variable  ply the Cauchy-Riemann conditions for the real and imagi-
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nary parts of an analytical functioW(¢{) of a complex vari- These expressions describe the growth of perturbations
able that are faster than exponential. It is easy to see that at the
finite time 7= 1 the Jacobiafw’| of the transformation be-
{=m+ir. (26) comes infinite at the pointn=0. This corresponds to the

_ . _ rarefaction wave break that occurs with the formation of a
The real part ofV({) is equal to thec coordinate of the foil,  hole in the plasma density distribution. In the case of a smalll
while they coordinate is the imaginary part. Thus we write amplitude perturbation. i.e., for a small absolute value of the

) parametek, we obtain from Eq(30) in the neighborhood of
X-+iy=W(2). @) =,

This expression is the conformal mapping from the complex 1

planem+ir to the planex+iy. W(§)~—i§+;<2(§_i) (33
Following Ref.[13], where the nonlinear stage of the tear-

ing mode of a thin current sheet was investigated, we noticgq

that the analytical functioW(¢) is defined by its behavior

on the real axig=0, i.e., by the initial conditiong;,(y,,0) 1

andé,(Yo,0). This gives the solution for the Cauchy problem W (~—i—k —. (39

for the elliptical system of Eqg18) and(19). According to 2(4—1)

Eq. (25) the surface mass of the foil is equal to

As mentioned above, the Jacobigh’| tends to infinity
for =1 at pointm=0 where the plasma density vanishes.
o= 7 (28) For real positivenegative « this singularity is accompanied
W' ()] by the compression wave breaks &t 1+ ()| xg|¥%/2 at
the pointsm= *|«g|Y%2, respectively, where the plasma
where a prime denotes differentiation with respect to thejensity tends to infinity.
complex variable. If « is a positive imaginary number, the singularity cor-
The function|W’({)| is the Jacobian of the transforma- responds to the compression wave break at the poin® at
tion that gives the mapping of the curxe-iy=W(m), the  time t=1—(«,/2)"2 while, if x is a negative imaginary
foil shape atr=0, to the curvex+iy=W(m+ir), which  number, the singularity corresponds to the compression wave
describes the change of the foil shape. Here the tiigethe  preak at the pointn= + (| «,|/2)"? at timet=1. The typical
parameter of the mapping. singularity corresponds to the case when both real and imagi-
In order to show the typical behavior of the solution de-nary parts ofx do not vanish. In this case the compression
scribed by Eq(27) we consider several different initial con- wave break occurs first, followed &t 1 by the rarefaction
ditions. wave break am=0. This case is illustrated in Fig. 2 far
(i) The initial conditions =0.2(1+i).
(ii) A perturbation localized in a finite region can be de-

ao(m)

1 . he initial "
X(M.0)= kn . y(M.0)= —m-+ | _ 29 scribed by the initial conditions
1+m 1+m x(m,0)=kgexp —m?), y(m,0)=—m+ k, exp(—m?).
correspond to the analytical function (35
1 The corresponding analytical function given by E®7) is
WO=—itte e 30 W({)=—i¢+ xexp(—2), (36)

where againk=kr+ik, is a complex constant. From Eq.

where k= kr+ik, is a complex constant and its absolute :
KRTIK P (27) we find

value gives the amplitude of the perturbation. From €3)

we find x(m, 7) = r+exp( 72— m?)[ kg cog 2m7) — k; sin(2m7)],
- (37)
ik 1—7°4+m
X(m'T) T R(l_ '7'2+ m2)2+4m27_2 and
omr y(m,7)=m+ exp( 72— m?)[ k, cog 2m7) + kg sin(2m7)].
K (31) 38)

(1— 2+ m?)2+4m? 72’
These expressions describe perturbations that grow faster

1+ 24+ m? than exponential. We see that in a finite time,
y(m,7)=—m+k 5 > ~(In1/2|x|)¥? for | k|<1, a compression wave break occurs
(1=7°+m9)“+4m°r with the formation of singular regions where the plasma den-

sity tends to infinity. In the regions in between, “bubbles”
KR ] (32 form where the plasma density decreases as-ex)(
(1— 2+ m?)%+4m?7? (iii) Now we consider the analytical function

2mr
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X a diverging shells are unstable against perturbations of the
1.5 form given by Eq.(40). After a finite time interval, a com-
pression wave breaking occurs with a periodic azimuthal
structure. According to Eq40), in the Lagrange coordinates
we have a linear superposition of the expressions that de-
scribe the cylindrical shell motion and the exponentially
growing perturbations. In particular, there is no stabilization
of the Rayleigh-Taylor instability due to stretching of the

1
___/ expanding shell. Similar patterns of the wave breaking in the
converging and expanding shells are also seen in Figs. 3

and 3b), which present the evolution of the instability in the
0.5 framework of the Ott’s modd]9], which we discuss below.
T According to heuristic arguments in Euler coordinates,
\/’_ stretching should saturate the perturbations when the shell
-~ radiusR increases. It is reasoned that in the Euler coordinates
the wavenumber and the amplitude of the perturbations

change according to

-3 -2 -1 1 2 3Y
. R :
q=—§q, and W-q(7)W=0. (41

> For an exponentially growing radius of the sheR
=Rgexp(7), we findq=qgeexp(—7). In this case the heuristic
reasoning predicts that the amplitud r) saturates. Pertur-
4 bations of the converging shell instead grow faster than ex-
ponential due to the shell shrinking. Stabilization due to
stretching has been discussed in R&fl], in the case of the
3 vortex stability, and in Ref§15-17] for the tearing mode of
a current sheet.

Contrary to this prediction we see from EdO) that, in
2 the Lagrange coordinates, the perturbation wave number
does not change. Indeed, in the Euler coordinates the typical
scale length of perturbations decreases, which implies that

1 the wave number grows. Since the wave number corresponds
\§ to the derivative with respect to the coordinates, using the
relationshipd/ds=J"1d/ds,, we can write the relation be-
e 1 5 3Y tween the wave number in the Euler coordinajgsand that
in the Lagrange coordinate, as gge=J 'q,. Here J

FIG. 2. Formation of the singularity on the foil in the case when =|ds/dsy| is the Jacobian of the transformation from the
neither the real nor the imaginary parts efvanish: x<=0.2(1  Euler to the Lagrange coordinates. If we linearize the expres-
+i). (@ Change of the foil shape an) density of the plasma sion for the Jacobian, assuming that the perturbations in Eq.

versus they coordinate at=0, 0,25, 0.5, 0.75, 0.9. (40) are relatively small, we obtain that the Jacobian in-
creases exponentially for an expanding shell so tpat
W({)=exp(£i{)+xw({), (39  xexp(—t)—0. Nevertheless, nonlinear effects due to the per-

. ) turbations make the Jacobian vanish when the compression
where« is supposed to be small andm<m=. This ex-  \yave break occurs. Thus the Rayleigh-Taylor instability is

pression provides a solution of EGE3) and (19) that de- ot stabilized either in the Lagrange or in the Euler coordi-
scribes the Rayleigh-Taylor instability of an initially nonpla- nate plane.

azimuthal direction according to the functiorw({). De-  into account the slowing down of the instability because the
pending on the sign in the exponent the shell either collapsggagnetic field inside the shell, and thus the magnetic pres-
or expands and its radius decreases or increases expon&fire acting on the shell, decrease. Assuming that the ampli-
tially. tude of the shell modulation is smaller that the shell radius,

For initial conditions corresponding to an exponentialye estimate the magnetic flux inside the cylindrical shell as
modulationw(m) =exp(—igm), with integer wave number

q>1, we have BR?=®=const. (42)

W(m+i7)=exp(=rxim)+kexpqr—igm). (40)  Then, forR(7)=Rqexp(), we find from Eq.(20)

This expression describes a collapsing or expanding cylindri- ®2
cal shell, modulated with azimuthal numbgrand initial r=3%In Wt . 43
modulation amplitudéx|. We see that both converging and 2mRyv
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3/2

X3/2

the shell radius increases proportionallytté while the per- ig
turbations grow as%*.
We shall further discuss the effects of the shell expansion =0 the cusp axis is aligned along treaxis. The case

or compression, later in the context of Ott’'s problem of thealzo is exceptional and leads to a different cusp form. The

Inserting this expression for into Eq. (40) we obtain that (aR) 5( 2
y: —

X
and —>0. (48)
o

a 4] |

Rayleigh-Taylor instability of a thin shell. singularity described by Eq(45) has a one-dimensional
structure and the other dimensions “dress” it according to
V. LOCAL STRUCTURE OF THE WAVE BREAK Ref. [20]. Considering for the sake of simplicity the case
IN STABLE AND UNSTABLE MEDIA ar=0, we see that the singularity appears alongytlteor-

dinate which, ifa;>0, is a single valued function oh for

We have described several scenarios of wave breaking<0 and becomes multivalued fot>0

that correspond to the so-called “gradient catastrophe” Now we discuss the break of the second kind. when
when the gradients in the perturbations tend to infinity after ?W'(éo)|=°° Again, the critical pointZ, can be shifte,d to

.f'Ttet tlmel interval. All éhesiz s;rr]lgularlltlig car]: t?\e ‘SJUbd'bV,'dEd e origin. In order to analyze the local structure of this map-
into two classes according to the evolution of the Jacobian ofy, “\ye consider the inverse mappibgz) =W-1(z) from

the transformation from the Lagrange to the Euler coordi-, : P
nates. In our case the Jacobian is equdWo(¢)|. The the the planextiy to the planem-+ir :
first kind of wave break corresponds to the compression case m+ir=U(2), (49)
where the Jacobian vanishes at the pdint This singularity

is typical for both stable and unstable media. The discussiowith z=x+iy. According to the rule of differentiation of the
of this wave break is presented in Ref48] and[19]. In inverse functions we find
collisionless media the compression wave break results in

the self-intersection of the particle trajectories and in the for- du 1
mation of regions with the multistream motion. In dissipative dz _ dw’
media, in the 1D case, compression wave break results in the d_g
formation[18] of a shock wave. In the second kind of sin-

gularities, which do not exist in stable media, the Jacobian hich proves the known property that the Jacobian of the
becomgs |r_1f|n|te gt the critical point of the transformatloninverse mapping vanishes, (z,) =0, at the critical point of
{o. This singularity corresponds to the rarefaction wavey,o girect transformation where the JacobMi(Zy) =.

break. : o Lo :
The coordinates of the critical point in thet lane are
In the case of the break of the first type, with/’ ()| given byzO|=W(§o). rica’ poit | Y P

=0, we can expand the functiol’ (£) in the vicinity of the The behavior of the system near the singularity is differ-

critical point {o which, with a coordinate change, can be o depending on whether the valuezg=W({,) is finite or
shifted to the origin. Thus we write infinite.

If the position of the singularity is at a finite distance in

(50

’ i H 2
Wi =Tal+iBe+. (44) thex-y plane from the initial foil position, we can repeat the
argument given above E@44) and obtain the local expan-
and sion
NGRS ' '
W =taZ+ipZ+ -, (45 U(z)zi%zzﬂ%z?”rn-, (51)

where @ and 8 are complex constantéy a shift in the which is the counterpart of Eq45). We note that Eq(51)
coordinates this dependence can be transformed into th@rresponds to a solution of Eqd8) and (19), where we
standard form of a cubic curve used in the theory of singuhave performed the hodograph transformation that inter-
larities [20]: ial+iBL3+ - --). changes dependent and independent variables. This transfor-

The essential property of the local representation of thénation yields
mapping from the Lagrange variables to the Euler variables

given by Eq.(45) is the cubic dependence on thecoordi- dxT=3dym, (52
nate. Modulo a rotation in the-y plane,8 can be taken real _ 53
and positive. Then we have dyT==3dym. (53

3 > In the x-y plane relationshig51) corresponds to the expan-

T T (¢9] 2 .
X=B§+a|?—aRTm— BT+? m----, (46 sion
12
.\ 12 N
72 aR B W({)= 2 V2 —2ip? B2 ... (54
y=—ar5 —(Br+am)m+ ~m?+m3. .., (47) o s :
2 2 3 9a

where onlyy has a cubic dependence am At the critical =~ Choosing now, for the sake of convenience, bethand 8’
time 7=0 the foil has a cusplike shape with sides given byreal we obtain instead of Eq&6) and (47)
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! use of the long-wavelength approximation. The expressions

m=—a’'xy—B'x?y+ ?y3~ (55  that are derived in this approximation lead to instability
growth rates that increase with the wave number of the per-

a L, L, B B turbations. If the Fourier transform of the analytical function

7= 5 (X oY)+ X Xy (56)  W({) of the complex variable/=m+ir, taken at7=0,

gives a functionW(q) that extends to infinity, it leads un-

Equation (56) shows that atr~0 this break occurs along avoidably to a singular behavior of the function in the com-

hyperbolic arc segments. One branch of hyperbola, descritplex planem+i r at a finite distance from the origin. In other
ing the local shape of the foil before the break, splitscat words, there are disturbances which grow arbitrarily fast

=0y=0 into two hyperbolic segments moving in the two whenq— . Instead, if the Fourier transfortV(q) is non-

neighboring quadrants. zero only inside a finite size regidg|<gq,,, and vanishes
When the singularity in the-y plane is at infinity, we use jdentically beyond this region, the analytical functidf{(¢),
the local expansion obtained by inverse Fourier transform, has a singular point
only at infinity [23].
W()=—if-i E+ e, (57) Outside the domain where the long-wavelength approxi-
4 mation holds, we expect that the growth rate saturates as a

_ ) . function of the wave number and vanishes either at infinity
which corresponds to Eq34). For U(z) in the limit z—% 5. 54 3 finite valueg=gq,,. This provides a regularization of
we haveU(z)={=—ip/2z. Separating real and imaginary the solution. To show this regularization we consider the one
parts', we flqd t_hat asymptotlcally j[he form of the shell nearole approximation of the singularity given by E3). The
the singularity is described by a circle, Fourier transform of the functiow(Z)=iZ+a/{ is the sum

of the derivative of aé function and of a Heaviside step
A (58 function:\7V(q)= —4'(q)—ia#d(q), which extends to infin-
47 ity in the g coordinate. In order to regularize this solution we
) ) o consider a heuristic argument and suppose that the short-
Both the radius and the center of the circle tend to infinity forwavelength behavior of the instability results in the decay of
7— 0. A similar evolution of the perturbations is seen in Fig. he perturbations witlg>gq,,. This decay can be taken into

2. account as a cutoff of the functioW(q) at dm by writing

W(q)=—¢8'(q)—iab(q)6(q,—0). The inverse Fourier
transform of this function gives W({)=i/+a(l
—explgmd))/¢. For||>1/g,, the behavior of this function
is similar to that in the one pole approximation. Instead,
The expressions obtained above describe the evolution ofhen|{| < 1/q,, the growth of perturbations slows down and
initially infinitesimal perturbations of foils with a smooth becomes exponential. In addition, a modulation of the solu-
shape forr<7,, wherer, is the time when the singularity tion appears, with wavelengthmZq,, .
appears. These solutions cannot be continued after the singu- Before concluding this section it is important to observe
larity. The singularities are formed when the Jacobian of théhat these limitations, which are intrinsic to the long-
transformation from the Euler to the Lagrange coordinatesvavelength approximation, have different consequences in
W' ()| either vanishes or becomes infinite. The latter cas¢he case of the rarefaction and of the compression wave
corresponds to a pole or to a cut of the analytical functiorbreak. This difference arises from the opposite behavior of
W(¢). An arbitrary small change of the form of the initial the characteristic perturbation wave numisér) when the
perturbation can lead to the appearance of a new pole in thigngularity is approached in the two cases. The long-
complex planem+ir and can change the time and the loca-wavelength limit corresponds toL<1, whereL the thick-
tion of the singularity. This is a well known property of the ness of the shell. According to the analysis of Sec. IV, the
ill-posed problems for partial differential equatiof9]. In  absolute value at timeof the wave numbek(t) is inversely
connection with the discussion of the final stage of variougproportional to the Jacobidiw’(¢)| in Eg. (28).
instabilities, the ill posedness has been discussed in Refs. In the case of the rarefaction wave break the Jacobian
[21,22,14, in the case of the Kelvin-Helmholtz instability of |W’|(t—t,)—c so that the long-wavelength approximation
vortex sheets, and in Refl13] in the case of the tearing works better and better close to the singularity sikdéends
instability of the current sheet. to zero as the singularity is approached. Futhermore, if we
We notice that the nonlinear interactions do not regularizeassume that the shell keeps a constant volume density during
the solutions, contrary to the hypothesis made in Ref], as  its evolution, Eq.(28) shows that close to the rarefaction
nonlinear interactions themselves lead to the appearance singularity the stretching of the shell results in a correspond-
singularities. ing reduction of its width, which also contributes to the va-
There are two reasons for the formation of a singularitylidity of the long-wavelength approximation.
after a finite time. The first mechanism is the compression Different is the case of the compression break since
wave break, which is inherent to nonlinear systems andW’|(t—ty)— 0. In this case, after a relatively short time, the
originates from the \{-V)v term in the hydrodynamic equa- solution enters the short-wavelength regime and its further
tions. The second reason is due to the fact that the problenmeyolution depends on the specific details of the internal struc-
under consideration are ill posed and it originates from theure of the plasma slab, which can no longer be considered as

B
+_
X 27

2 2
+y2= A

VI. THE ILL POSEDNESS OF THE PROBLEM
OF A THIN SHELL INSTABILITY
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a thin shell. When the wavelength of the nonlinear perturba- Y (a) Y b
tion becomes much shorter than the slab width, and the slab
has sharp boundaries, we may adopt the semi-infinite domain
model which is well developed in the case of the Rayleigh-

Taylor instability starting from the work by Fermi and von % %
Neumann 25]

VII. OTT'S PROBLEM FOR AN INITIALLY NONPLANAR

SHELL ) ) o
FIG. 3. Development of the Rayleigh-Taylor instability in the

In this section we assume that the density of the neutratase of Ott's problen{a) for a radially expanding andb) for a
component vanishes so that the equation for the foil motiortonverging cylindrical shell.

is odsr=df . The evolution of the Rayleigh-Taylor instabil-

ity of an initially nonplanar thin shell was investigated nu- w*(m,7)=(wgCcos7+Wgsin7)exp(—im)+(w; cos/qr

merically in Refs[10] and[11], while an azimuthally sym- ] ]

metric configuration where the variables depend orr tard +wg sm\/ar)exp( —igm) (65

z coordinates was discussed in Rgf4]. Here we consider . h

the case of an azimuthally asymmetric foil which is taken toWIt constanw,. | i : . .

be uniform along thez-axis. In the mass Lagrange coordi- grevg'[Zrth;]r;Sr:dg:];vn _mvl\f'a_v?loi gugﬁg?; Xvii in ;rr:gevg\jler
. . . 1= Wo=W3= 4= K<<, 5

nates the 2D equations of motion of the foil, E@sand(3) — 1We=w,=wy=0. In this case Eqg64) and(65) describe

of Ref. [9], take the form a collapsing cylindrical shell, modulated with azimuthal

9. X=dy (59) numberqg and initial amplitudex. As we can see in Fig.(3)
" m the radially expanding shell is unstable against perturbations
_ of the form given by Eq(64). After a finite time interval,
a'r'ry_ - (?mX. (60)

compression wave breaking occurs with periodic azimuthal
structure.

A converging shell is also unstable, as we see in Fig). 3
The development of modes of this type was observed experi-
mentally in Ref.[26], examining the Rayleigh-Taylor insta-
bility of a cylindrical slab. According to Eq$64) and (65),
while for the complex conjugate function* (m, 7)=x—iy in the Lagrange coordinates we have a linear superposition
we have of terms that describe the motion of the cylindrical shell and

exponentially growing perturbations. As in the case studied
9 W* =id W, (62) in Sec. IV, there is no stabilization of the Rayleigh-Taylor
instability due to stretching of the expanding shell. If we take

Wherew and W* are Considered as independent functionsinto account that the pressure inSide the She” decreases, we

From these equations it follows that the complex function
w(m, 7)=x+iy obeys equation

3 W= —1J,W, (61)

with x= (W+w*)/2, andy= —i(w—w*)/2. find again that the exponential dependence of the perturba-
The particular solutionw=im+ 7%/2 corresponds to a tions and of the expansion of the shell on the variable
uniformly accelerated plane foil while the solution corresponds to slower, algebraic dependences on time.

Now we consider the generic solution of E@1). This
w(m, 7)=x+iy=im3—ilmri— 175+ 3m?2 (63 equation admits seven symmetry transformations represented
' N ot 2 by the operators:
describes the local structure of the wave breaking and has the X =W+ (m.7)d 66
characteristic cubic dependence of the coordiyad@ m. == WM, 7) 9, (66)
qu W(m,r)oceprmq) Eqg. (61 describes.exponentially wherew;(m, 7) is a solution of Eq(61),
growing and decaying modes fqr0 and oscillatory modes

with real frequency fog<0. The intervals inq are inter- X1=idm, (67)
changed in Eq(62) for w* (m, 7) «cexpimaq).
For initial conditions wy(m)=w; expim)-+w;exp{gm) X2=d,, (68)
and  9,wp(m)=w,exp(m)+w,expigm) and wg(m) B
=Wws exp(—im)+wgexp(—igm) and d,wg(m)=w;exp X3=2Mdm + 79, (69
(—im)+wg exp(—igm) the solutions of Eq961) and(62) are X, = 2imd.— 7wa (70)
of the form 4 T W
Xs=17Md,—im?dy,— 3 (7%+ 2im)wa,,, 71
w(m,7)=(w; coshr+w, sinh7)exp(im) 5= 17, 1M =3 (7" + 2IM)Wo, (71
XGZW(?W. (72)

+ (w3 cosh/q -+ w,sinhy/gr)expigm)
(64) A discussion of the theory of the Lie group analysis of dif-
ferential equations is presented in R¢&Z,28. The operator
and X.. stems from the fact that E¢61) is linear with respect to
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w(m,7) so that, to any solutionv(m, ), one can add any VIIl. CONCLUSIONS AND DISCUSSION

other solutionw;(m, 7). The operator¥X, to X, andXg cor- : .
respond to the existence of stationary, of uniform solutions We have analyzed the nonlinear magnetohydrodynamics

and to the invariance with respect to stretching of the vari—mc a weakly ionized plasmq S"?‘b- We havg demonstrated that
ables, respectively. The operadée represents the transfor- the structure of the magnetic field in a stationary plasma slab,

mation moving under the magnetic field pressure, is similar to that
of a shock wave. In this case the magnetic field pressure is

— m — T balanced by the friction due to the interaction with the neu-

m=T"am’ 7 1—am’ trals. This configuration is unstable against a Rayleigh-

(73 Taylor-like instability. In the long-wavelength limit the
iar? lasma slab can be approximated as a thin shell. The nonlin-
ol 12 T P pp _ -

w=(1—am)~“ex 4(1—am) W. ear Cauchy problem for the thin shell has analytical solu-

tions, which we have expressed in terms of analytical func-
Under this transformation a solutidifm, 7) takes the form  tions of a complex variable. We have shown that after a
finite time a singularity forms. These singularities are of two
types.(In the experiments on the nonlinear evolution of the
Rayleigh-Taylor instability of thin shell these singularities
are seen as bubbles and spik@8]) The first type corre-
sponds to the folding of the shell leading to the compression
wave breaking. Mathematically, it arises from the nonlinear
relationship between the Lagrange and the Euler coordinates.
If we choosef=i/(4m)"? anda=—1/ in Eq.(74), and  The second type corresponds to the tearing of the shell lead-
superposev=im- 7%/2, we obtain a solution of the form  ing to the formation of a hole in the density. In this case the
5 instability growth is faster than exponential. Ott's problem of
w(m, 7)=im+ i+ Wo ex;{i T the Rayle_lgh-Taonr instability of a thin nonplanar shell also
’ 2 [4m(m+h)]¥2 4(m+h) has solutlon§_ W|th nonexponential growth of the perturpa-
(75)  tions. In addition, in the case of a nonplanar shell, stretching
does not stabilize the perturbations. In the long-wavelength
wherew,=i(h)*?is the initial perturbation amplitude arid approximation, the tearing of the shell after a finite time and
is a complex parameter. The shell is initially a planar foil in general the faster than exponential growth are the result of
with perturbations localized in a region with size of orderthe ill posedness of the Cauchy problem. Since this ill pos-
[h|. If his imaginary and positiveh=i|h|, this solution edness is regularized outside the framework of the long-
describes perturbations that grow faster than exponentialvavelength model, the regimes with nonexponential growth
«exp(@/4/h|). The typical singularity corresponds to the found in this paper are meant to describe the intermediate
nonlinear superposition of compression and rarefactiormsymptotic behavior of the perturbations. However, in the
waves. After a finite time the compression wave breakscase of the rarefaction wave break, the long-wavelength ap-
while it takes an infinite time for the rarefaction wave breakproximation holds up to the formation of the singularity
to occur. since the perturbation wave number tends to zero as the sin-
The superposition of solutions gularity is approached.

B F{ ia7?
D M T a1 am

m T
l-am’l—am

X f . (74)

w(m, 7)=(w; coshr+w, sinh7)exp(im)
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